LEAD-BASED PAINT INSPECTION

Belmont Charter Schools
Philadelphia, Pennsylvania

Prepared For:
Belmont Charter Network
Community Education Alliance
1301 Belmont Avenue
Suite 209
Philadelphia, PA 19104

July 2021
TABLE OF CONTENTS

Contents

SCOPE OF WORK
Building Background (limited) 1
Preface 1
Training 1
Methods 1
Findings 2
Lead wipe surface sampling 2
Lead & Copper water sampling 2
Recommendations 3
Legitimacy 3
Disclosure Responsibility 4
Disclaimer 4

APPENDIX A - Lead Wipe Sampling Laboratory Report 5
APPENDIX B - XRF Data Sheets 6
Positive Readings 7
All Inspection Data 8
APPENDIX C - Diagram of Lead Inspection Area 9
APPENDIX D – Lead & Copper Report 10
January 13, 2022

Mrs. Theresa Doggett
Director of Facilities and Operations
Belmont Charter Network
Community Education Alliance
1301 Belmont Avenue
Suite 209
Philadelphia, PA 19104

Subject: Lead-based Paint Inspection
Lead & Copper Water Sampling
Belmont Academy Charter School
Philadelphia, Pennsylvania

Dear Mrs. Doggett,

Please find enclosed the following report for referenced project listed above. The lead-based paint inspection was performed within current acceptable industry guidelines - i.e. City of Philadelphia Guidelines.

Norman Harrison conducted the testing for this project. Mr. Harrison is a PA Licensed Lead Inspector / Risk Assessor.

On behalf of Health and Safety, Inc., (H&S) we wish to thank you for allowing H&S to perform this lead-based paint inspection. If you have any questions concerning this report, please contact me at your earliest convenience at (856) 452-1311.

Respectfully,

Health & Safety Services, Inc.

James Proctor
President
SCOPE OF WORK

Building Background (limited)

The building is located at 907 N 41st Street in Philadelphia, Pennsylvania. The building has three stories with a basement. The building is estimated to be built in 1900’s.

Preface

The Health & Safety Services, Inc. (H&S) was contracted to perform lead-based paint inspection at the above stated address. H&S completed the XRF testing of the property in June 2021. Testing was performed on the interior and exterior painted surfaces on the referenced property building.

Training

Technician utilized by H&S has been trained in the 5 day or 1-day refresher Environmental Protection Agency (EPA) Model Program for Lead Inspector / Risk Assessor, with current, valid Commonwealth of Pennsylvania Lead Inspector certification.

Technicians utilized by H&S have also been trained in the use, calibration and maintenance of the X-ray Fluorescence (XRF) equipment they currently use, along with necessary principles of Radiation Safety, as a result of a manufacturer’s developed and taught training class.

Methods

The calibration of the Device is done in accordance with Performance Characteristic Sheets (PCS). This XRF instrument is calibrated using a calibration block that is supplied by RMD to determine if the instrument is within calibration. Three (3) calibration readings are taken and averaged before and after the subject building is tested to assure the instrument is working within the manufacturer’s standards. If for any reason the instrument is not maintaining a consistently reproducible calibration, manufacture’s recommendations are used to bring the instrument into calibration. If the instrument can not be brought back into calibration it is immediately removed from active service and sent back to the manufacturer for examination, service and/or re-calibration.

The methodology for conducting this lead-based paint survey was done utilizing single family testing rules according to the HUD Guidelines, dated September 1997, - Chapter 7 for single family housing.

{This picture is only representation of typical room/ area at a site.}
Testing for the School was done utilizing the *Quick Mode* setting. One test point was taken for testing combination, except for the walls where at least four (4) were tested, to determine the amount of lead contained in the paint for that substrate. A testing combination is characterized by the room equivalent (living room, dining room, etc.), component type (baseboard, casing, etc.) and substrate (metal, sheetrock, etc.). The resulting test readings are then classified as POSITIVE OR NEGATIVE according to the instruments *PCS Sheet* for Threshold Limits (*See previous table for limits*). Substrate corrections were not performed since the LPA-1 was used in the *Quick Mode* setting, no substrate corrections is necessary according to the PCS.

Findings

In testing the subject building positive readings were found on multiple components on the interior and exterior of the building. Attached in the following pages is a listing of these components by area, component and condition:

Please note: Even though one-(1) component in the room may have tested positive for lead-based paint, those components located in other areas, of the same room/area, must also be abated. EX – if a window casing is positive for lead-based paint in Room #1 then all the window casings in Room #1 must be remediated.

Lead wipe surface sampling

Lead Dust Clearance Testing was completed on August 17. The HUD Guidelines recommend a lead dust wipe clearance test consisting of at least two (2) dust wipes per room.

Lead dust values are given in micrograms of lead per square foot of surface area (µg/ft²).

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (µg/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floors</td>
<td>40</td>
</tr>
<tr>
<td>Window Sills</td>
<td>250</td>
</tr>
<tr>
<td>Window Wells</td>
<td>200</td>
</tr>
<tr>
<td>Concrete</td>
<td>400</td>
</tr>
</tbody>
</table>

No dust wipe samples were above City of Philadelphia Limits

Lead & Copper water sampling

Health & Safety Services, Inc. provided the services necessary to complete potable water sampling for lead and copper levels of drinking water throughout the school district. A water samples were collected throughout the district, 3 locations tested above the limit of 15 parts per billion (ppb). The school was notified, 1 fountain was removed and the filters were replaced in the remaining 2 fountains and followup sampling cleared the water sources.

No water samples tested above City of Philadelphia Limits
Recommendations

The following recommendations are based on the XRF results collected during the inspection of this property: Health & Safety Services, Inc. recommends having all positive components removed and replaced with new. However this can be a financial burden to the owner. The owner may conduct the following as an alternative to full component removal:

- **Window casings, sash, sills and aprons** – paint stabilization of loose and flaking areas. H&S also recommends that the windows be removed and replaced.
- **Baseboards** – paint stabilization of loose and flaking areas. Also making sure that remaining baseboards are intact.
- **Doors** – depending on the condition of the door, trim friction side of door and stabilize remaining door.
- **Door casings** – paint stabilization of loose and flaking areas. Also making sure that remaining door casings are intact.
- **Pipe** – paint stabilization of loose and flaking areas. Make sure remaining
- **Walls** – paint stabilization of loose and flaking areas.
- **Window sills (exterior)** – paint stabilization of loose and flaking areas around the casings and aprons. The sills should be scraped to the bare wood and re-painted. Another option is to enclose the exterior window sills with an aluminum capping and seal the edges.
- **Water** – maintain water filter replacement schedule.

Most of the areas that tested positive for lead-based paint are not friction areas. Windows and doors area friction areas and should be addressed by removal and replacement whenever possible.

Please note that if the owner decides to keep the components and perform paint stabilization the owner will need to conduct routine maintenance on the components to ensure that the components remain intact and are not causing contamination of the area(s) where they are located. This would include having a licensed lead inspector conduct dust wipe samples of the areas to determine if dust contamination is present.

The above areas should be addressed by an approved abatement contractor. It is recommended that the owner have a licensed and/ or trained EPA abatement contractor perform the necessary remediation on these components. Once work is completed a licensed lead evaluation contractor will need to collect dust wipe samples for clearance.

Most of the areas that tested positive for lead-based paint are not friction areas. Windows and doors area friction areas and should be addressed by removal and replacement when possible.

Legitimacy

H&S’s results only pertain to those components in the specific areas surveyed at the time of our evaluation. If any component(s) were not evaluated or are in question then additional testing should be performed so to adequately characterize the coated component(s).
Disclosure Responsibility

A copy of this report must be provided to new lessees (tenants) and purchases of this property under Federal Law (24 CFR part 53 and 40 CFR part 745) before they become obligated under a lease or sales contract. The complete report must also be provided to new purchases and it must be made available to new tenants. Landlords (lessors) and sellers are also required to distribute an educational pamphlet and include standard warning language in their leases or sales contracts to ensure that parents have the information they need to protect their children from lead-based paint hazards.

Disclaimer

This is our report of a visual survey, and X-Ray Fluorescence (XRF) analysis of the readily accessible areas of this building and tested components. The presence or absence of lead-based paint or lead-based paint hazards applies only to the tested or assessed surfaces on the date of the field visit and it should be understood that conditions noted within this report were accurate at the time of the inspection and in no way reflect the conditions at the property after the date of the inspection. Ongoing monitoring by the owner is usually necessary. No other environmental concerns were addressed during this inspection.
APPENDIX A - Lead Wipe Sampling Laboratory Report
LEAD WIPE SAMPLE ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Lab No.:</th>
<th>Location:</th>
<th>Area:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7273969</td>
<td>Blank</td>
<td>Blank</td>
<td><10 µg</td>
</tr>
<tr>
<td>7273970</td>
<td>Classroom 300 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273971</td>
<td>Classroom 300 WS</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273972</td>
<td>Classroom 302 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273973</td>
<td>Classroom 302 WS</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273974</td>
<td>3rd Flr-Floor Hallway</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273975</td>
<td>Classroom 303 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273976</td>
<td>Classroom 303 Window Sill</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273977</td>
<td>Classroom 200 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273978</td>
<td>Classroom 200 Window Sill</td>
<td>0.25 ft²</td>
<td>40 µg/ft²</td>
</tr>
</tbody>
</table>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: 8/16/2021
Date Analyzed: 8/17/2021
Signature: Chad Shaffer
Analyst: Chad Shaffer

Approved By: Frank E. Ehrenfeld, III
Laboratory Director

Dated: 8/17/2021 5:33:39
Page 1 of 6
LEAD WIPE SAMPLE ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Location</th>
<th>Area</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>7273979</td>
<td>Classroom 201 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273980</td>
<td>Classroom 201 Window Sill</td>
<td>0.25 ft²</td>
<td>40 µg/ft²</td>
</tr>
<tr>
<td>7273981</td>
<td>Classroom 202 Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273982</td>
<td>Classroom 202 Window Sill</td>
<td>0.25 ft²</td>
<td>40 µg/ft²</td>
</tr>
<tr>
<td>7273983</td>
<td>Classroom 203 Floor</td>
<td>1.0 ft²</td>
<td>20 µg/ft²</td>
</tr>
<tr>
<td>7273984</td>
<td>Classroom 203 Window Sill</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273985</td>
<td>Classroom 207 Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273986</td>
<td>Classroom 207 Window Sill</td>
<td>0.25 ft²</td>
<td>60 µg/ft²</td>
</tr>
<tr>
<td>7273987</td>
<td>Kitchen Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273988</td>
<td>Cafeteria Floor</td>
<td>1.0 ft²</td>
<td>25 µg/ft²</td>
</tr>
</tbody>
</table>

Please refer to the Appendix of this report for further information regarding your analysis.

Dated: 8/17/2021 5:33:39
<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Client No.</th>
<th>Location</th>
<th>Area</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>7273989</td>
<td>21</td>
<td>Cafeteria Window Sill</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273990</td>
<td>22</td>
<td>Foyer Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273991</td>
<td>23</td>
<td>1st Fl Hallway-Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273992</td>
<td>24</td>
<td>Auditorium Floor</td>
<td>1.0 ft²</td>
<td>10 µg/ft²</td>
</tr>
<tr>
<td>7273993</td>
<td>25</td>
<td>Classroom 101 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273994</td>
<td>26</td>
<td>Classroom 101 Window Sill</td>
<td>0.25 ft²</td>
<td><40 µg/ft²</td>
</tr>
<tr>
<td>7273995</td>
<td>27</td>
<td>Classroom 103 Floor</td>
<td>1.0 ft²</td>
<td><10 µg/ft²</td>
</tr>
<tr>
<td>7273996</td>
<td>28</td>
<td>Classroom 103 Window Sill</td>
<td>0.25 ft²</td>
<td>40 µg/ft²</td>
</tr>
<tr>
<td>7273997</td>
<td>29</td>
<td>Classroom 104 Floor</td>
<td>1.0 ft²</td>
<td>20 µg/ft²</td>
</tr>
<tr>
<td>7273998</td>
<td>30</td>
<td>Classroom 104 Window</td>
<td>0.25 ft²</td>
<td>40 µg/ft²</td>
</tr>
</tbody>
</table>

Please refer to the Appendix of this report for further information regarding your analysis.
CERTIFICATE OF ANALYSIS

<table>
<thead>
<tr>
<th>Client:</th>
<th>Health & Safety Services, Inc</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO Box 365</td>
<td></td>
</tr>
<tr>
<td>Berlin NJ 08009</td>
<td></td>
</tr>
<tr>
<td>Lab No.: 7273999</td>
<td></td>
</tr>
<tr>
<td>Client No.: 31</td>
<td></td>
</tr>
</tbody>
</table>

Location: Classroom 102 Floor

Area: 1.0 ft²

Result: 30 µg/ft²

<table>
<thead>
<tr>
<th>Client:</th>
<th>HEA198</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab No.: 7274000</td>
<td></td>
</tr>
<tr>
<td>Client No.: 32</td>
<td></td>
</tr>
</tbody>
</table>

Location: Classroom 102 Window Sill

Area: 0.25 ft²

Result: <40 µg/ft²

<table>
<thead>
<tr>
<th>Client:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab No.: 7274001</td>
<td></td>
</tr>
<tr>
<td>Client No.: 33</td>
<td></td>
</tr>
</tbody>
</table>

Location: Daycare Floor

Area: 1.0 ft²

Result: 10 µg/ft²

Please refer to the **Appendix** of this report for further information regarding your analysis.

Date Received: 8/16/2021

Date Analyzed: 08/17/2021

Signature: Chad Shaffer

Analyst: Chad Shaffer

Approved By:

Frank E. Ehrenfeld, III

Laboratory Director

Dated : 8/17/2021 5:33:39

Page 4 of 6
Appendix to Analytical Report:

Customer Contact: Jim Proctor
Method: AAS - SW 846: 3050B: 7000B

This appendix seeks to promote greater understanding of any observations, exceptions, special instructions, or circumstances that the laboratory needs to communicate to the client concerning the above samples. The information below is used to help promote your ability to make the most informed decisions for you and your customers. Please note the following points of contact for any questions you may have.

iATL Customer Service: customerservice@iatl.com
iATL Office Manager: wchampion@iatl.com
iATL Account Representative: Kelly Klippel
Sample Login Notes: See Batch Sheet Attached
Sample Matrix: Dust Wipes
Exceptions Noted: See Following Pages

General Terms, Warrants, Limits, Qualifiers:

General information about iATL capabilities and client/laboratory relationships and responsibilities are spelled out in iATL policies that are listed at www.iATL.com and in our Quality Assurance Manual per ISO 17025 standard requirements. The information therein is a representation of iATL definitions and policies for turnaround times, sample submittal, collection media, blank definitions, quantification issues and limit of detection, analytical methods and procedures, sub-contracting policies, results reporting options, fees, terms, and discounts, confidentiality, sample archival and disposal, and data interpretation.

iATL warrants the test results to be of a precision normal for the type and methodology employed for each sample submitted. iATL disclaims any other warrants, expressed or implied, including warranty of fitness for a particular purpose and warranty of merchantability. iATL accepts no legal responsibility for the purpose for which the client uses test results. Any analytical work performed must be governed by our Standard Terms and Conditions. Prices, methods and detection limits may be changed without notification. Please contact your Customer Service Representative for the most current information.

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP, AIHA LAP LLC, or any agency of local, state or province governments nor of any agency of the U.S. government.

This report shall not be reproduced except in full, without written approval of the laboratory.

Information Pertinent to this Report:
Analysis by AAS: SW 846: 3050B: 7000B, 2010

Certification:
- NATIONAL LEAD LABORATORY ACCREDITATION PROGRAM (NLLAP)
- AIHA-LAP, LLC No. 100188
- NYSDOH-ELAP No. 11021

Threshold Limits:
- USEPA Dust Level Hazard Standards 3/08/2021
- Floor: 10 micrograms/ft²
- Window Sills: 100micrograms/ft²
- Window Well/Trough: 400micrograms/ft²

This report meets the standards set forth in the EPA's National Lead Laboratory Accreditation Program (NLLAP) through the Laboratory Quality System Requirements (LQSR) Revision 3.0 November 5, 2007. All Environmental Lead Proficiency Analytical Testing (ELPAT) is through the AIHA-PAT established program.

Dated : 8/17/2021 5:33:39
Regulatory limit varies by surface location (EPA/HUD guidelines). Unless otherwise stated, results assume one square foot sampled.

Method requires submittal of blanks.

Sample results are not corrected for contamination by field or analytical blanks.

All results are based on the samples as received at the lab. iATL assumes that appropriate sampling methods have been used and that the data upon which these results are based have been accurately supplied by the client.

Method Detection Limit (MDL) per EPA Method 40CFR Part 136 Appendix B. Reporting Limit (RL) based upon Lowest Standard Determined (LSD) in accordance with AIHA-ELLAP policies.

LSD= 0.2 ppm; MDL= 4.7 micrograms/ft\(^2\); RL= 10.0 micrograms/ft\(^2\); (based upon 1.0 square foot sampled).

The EPA 403 Final Rule (40 CFR 745.63) requires that all wipe samples of settled dust shall be collected using a wipe that meets ASTM E1792.

Disclaimers / Qualifiers:

There may be some samples in this project that have a "NOTE:" associated with a sample result. We use added disclaimers or qualifiers to inform the client about something that requires further explanation. Here is a complete list with highlighted disclaimers pertinent to this project. For a full explanation of these and other disclaimers, please inquire at customerservice@iatl.com.

NOTE: Incomplete digestion of wipe material may result in low recovery of lead. The EPA403 Final Rule (40 CFR 745.63) requires that all wipe samples of settled dust shall be collected using a wipe that meets ASTM E1792. Results for wipes not meeting ASTM E1792 are not recognized within the Accreditation Program.

< less than sign, signifies none-detected below the empirical value based upon sub-sampled mass. This is often below the Reporting Limit (see above).
APPENDIX B - XRF Data Sheets
Positive Readings
(7.0) CERTIFICATION

The information contained in this report is a true and accurate representation of the lead-based paint conditions at the subject property at the time of the investigation, based on the professional judgment of the person(s) who conducted and reported this lead-based paint inspection and risk assessment:

Name: Norman Harrison

Date 6/25/2021

State of Pennsylvania Certified Lead Inspector and Risk Assessor, P-003188
All Inspection Data
<table>
<thead>
<tr>
<th>BACKS 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>INACT43</td>
<td>INACT42</td>
<td>INACT41</td>
<td>INACT40</td>
<td>INACT49</td>
<td>INACT39</td>
<td>INACT38</td>
<td>INACT37</td>
</tr>
<tr>
<td>WHITTE26</td>
<td>WHITTE5</td>
<td>WHITTE4</td>
<td>WHITTE3</td>
<td>WHITTE2</td>
<td>WHITTE2</td>
<td>WHITTE1</td>
<td>WHITTE0</td>
</tr>
<tr>
<td>CEILING25</td>
<td>CEILING24</td>
<td>CEILING23</td>
<td>CEILING22</td>
<td>CEILING21</td>
<td>CEILING20</td>
<td>CEILING19</td>
<td>CEILING18</td>
</tr>
<tr>
<td>FIRST FLOCC CLASS</td>
</tr>
<tr>
<td>0 m³/cm²</td>
<td>0 m³/cm²</td>
<td>0 m³/cm²</td>
<td>1 m³/cm²</td>
<td>1 m³/cm²</td>
<td>1 m³/cm²</td>
<td>1 m³/cm²</td>
<td>1 m³/cm²</td>
</tr>
<tr>
<td>360</td>
<td>394</td>
<td>348</td>
<td>347</td>
<td>346</td>
<td>345</td>
<td>344</td>
<td>343</td>
</tr>
<tr>
<td>NO_3</td>
<td>NO_2</td>
<td>NO_1</td>
<td>NO_0</td>
<td>NO_0</td>
<td>NO_0</td>
<td>NO_0</td>
<td>NO_0</td>
</tr>
<tr>
<td>339</td>
<td>336</td>
<td>337</td>
<td>338</td>
<td>339</td>
<td>334</td>
<td>332</td>
<td>331</td>
</tr>
<tr>
<td>0.1 m³/cm²</td>
</tr>
<tr>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
</tr>
</tbody>
</table>
Performance Characteristic Sheet

EFFECTIVE DATE: December 1, 2020

MANUFACTURER AND MODEL:
Make: Viken Detection (previously Heuresis)
Models: Model Pb200i
Source: 60Co, 5 mCi (nominal – new source)

FIELD OPERATION GUIDANCE

ACTION LEVEL SETTING:
0.5 mg/cm²

OPERATING PARAMETERS:
Action Level mode

XRF CALIBRATION CHECK LIMITS:
0.8 to 1.2 mg/cm² (inclusive) at Action Level setting = 1.0 mg/cm²

SUBSTRATE CORRECTION:
Not applicable

INCONCLUSIVE RANGE OR THRESHOLD:

<table>
<thead>
<tr>
<th>ACTION LEVEL MODE READING DESCRIPTION</th>
<th>SUBSTRATE</th>
<th>INCONCLUSIVE RANGE (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results not corrected for substrate bias on any substrate</td>
<td>Brick</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td></td>
<td>Drywall</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td></td>
<td>Metal</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td></td>
<td>Plaster</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>0.4 – 0.6</td>
</tr>
</tbody>
</table>
BACKGROUND INFORMATION

EVALUATION DATA SOURCE AND DATE:
This sheet is supplemental information to be used in conjunction with Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing, 2012 Edition ("HUD Guidelines"). Performance parameters shown on this sheet are calculated using test results on building components in the HUD archive. Testing was conducted on 146 test samples in January 2020, with two separate instruments running software version Pb200i 6.0 (DEBUG version) in Action Level test mode. The actual source strength of each instrument on the day of testing was approximately 2.9 mCi; source ages were approximately 9 months.

OPERATING PARAMETERS
Performance parameters shown in this sheet are applicable only when properly operating the instrument using the manufacturer's instructions and procedures described in Chapter 7 of the HUD Guidelines.

XRF CALIBRATION CHECK:
The calibration of the XRF instrument should be checked with the Action Level set to 1.0 mg/cm² using the paint film nearest 1.0 mg/cm² in the NIST Standard Reference Material (SRM) used (e.g., for NIST SRM 2579, use the 1.02 mg/cm² film; for NIST SRM 2579a, use the 1.04 mg/cm² film).

If the average (rounded to 1 decimal place) of three readings is outside the acceptable calibration check range, follow the manufacturer's instructions to bring the instrument into control before XRF testing proceeds.

EVALUATING THE QUALITY OF XRF TESTING:
Randomly select ten testing combinations for retesting from each house or from two randomly selected units in multifamily housing.

Conduct XRF re-testing at the ten testing combinations selected for retesting.

Determine if the XRF testing in the units or house passed or failed the test by applying the steps below. Compute the Retest Tolerance Limit by the following steps:

1. Determine XRF results for the original and retest XRF readings. In single-family and multifamily housing, a result is defined as a single reading. Therefore, there will be ten original and ten retest XRF results for each house or for the two selected units.
2. Calculate the average of the original XRF result and the retest XRF result for each testing combination.
3. Square the average for each testing combination.
4. Add the ten squared averages together. Call this quantity C.
5. Multiply the number C by 0.0072. Call this quantity D.
6. Add the number 0.032 to D. Call this quantity E.
7. Take the square root of E. Call this quantity F.
8. Multiply F by 1.645. The result is the Retest Tolerance Limit.
9. Compute the average of all ten original XRF readings.
10. Compute the average of all ten re-test XRF readings.
11. Find the absolute difference of the two averages.
If the difference is less than the Retest Tolerance Limit, the inspection has passed the retest. If the difference of the overall averages equals or exceeds the Retest Tolerance Limit, this procedure should be repeated with ten new testing combinations. If the difference of the overall averages is equal to or greater than the Retest Tolerance Limit a second time, then the inspection should be considered deficient.

Use of this procedure is estimated to produce a spurious result approximately 1% of the time. That is, results of this procedure will call for further examination when no examination is warranted in approximately 1 out of 100 dwelling units tested.

TESTING TIMES:
The instrument time to take a reading varied within a narrow range from 5 to 6 seconds, with a small number (3%) of longer times from 7 to 11 seconds. The longer readings were almost all on wood substrates. This range of reading times applies only to instruments with the same source strength as those tested (2.9 mCi at the time of PCS testing). Instruments with stronger sources will have shorter reading times and those with weaker sources, longer reading times.

CLASSIFICATION OF RESULTS:
XRF results are classified as positive if they are greater than or equal to 0.6 mg/cm², negative if they are less than or equal to 0.4 mg/cm² and inconclusive if they are equal to 0.5 mg/cm².

DOCUMENTATION:
This XRF Performance Characteristic Sheet (PCS) was developed by QuanTech, Inc., under a contract with the U.S. Department of Housing and Urban Development, Office of Lead Hazard Control and Healthy Homes.

A report titled Methodology for XRF Performance Characteristic Sheets (EPA 747-R-95-008) provides an explanation of the statistical methodology used to develop Performance Characteristic Sheets at the Federal standard (Action Level) of 1.0 mg/cm², and provides empirical results from using the recommended inconclusive ranges or thresholds for specific XRF instruments. The report may be downloaded at http://www2.epa.gov/lead/methodology-xrf-performance-characteristic-sheets-epa-747-r-95-008-september-1997. The methodology was subsequently generalized by QuanTech for application to other Action Levels.
APPENDIX C - Diagram of Lead Inspection Area
APPENDIX D – Lead & Copper Report
LEAD WATER SAMPLE ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Client No.</th>
<th>Location</th>
<th>Result (ppb)</th>
<th>Sample Acidified to pH <2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7274739</td>
<td>1</td>
<td>1st Draw-Fountains-3rd Fl Filter</td>
<td><1.00</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274740</td>
<td>2</td>
<td>1st Draw-Fountains-3rd FL Standard</td>
<td>6.20</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274741</td>
<td>3</td>
<td>1st Draw-Fountains-2nd Fl Filtered</td>
<td>57.5</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274742</td>
<td>4</td>
<td>1st Draw-Fountains-2nd Fl Standard</td>
<td>9.70</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274743</td>
<td>5</td>
<td>1st Draw-Fountains-1st Fl Filtered</td>
<td><1.00</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274744</td>
<td>6</td>
<td>1st Draw-Fountains-1st Fl Standard</td>
<td>3.80</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274745</td>
<td>7</td>
<td>1st Draw-Fountains-2nd Fl Annex -Filtered</td>
<td><1.00</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274746</td>
<td>8</td>
<td>1st Draw-Fountains-2nd Fl Annex-Standard</td>
<td>11.8</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274747</td>
<td>9</td>
<td>1st Draw-Fountains-Lobby-Annex Filtered</td>
<td>19.7</td>
<td>Sample acidified to pH <2</td>
</tr>
<tr>
<td>7274748</td>
<td>10</td>
<td>2nd Draw-Fountains-3rd Fl Filter</td>
<td>2.00</td>
<td>Sample acidified to pH <2</td>
</tr>
</tbody>
</table>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: 8/16/2021
Date Analyzed: 8/19/2021
Approved By: Frank E. Ehrenfeld, III
Laboratory Director
Signature: Mark Stewart
Analyst:

Dated: 8/20/2021 11:20:55
Page 1 of 4
LEAD WATER SAMPLE ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Client No.</th>
<th>Location</th>
<th>Result (ppb)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7274749</td>
<td>11</td>
<td>2nd Draw-Fountains-3rd Fl Standard</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274750</td>
<td>12</td>
<td>2nd Draw-Fountains-2nd Fl Filtered</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>7274751</td>
<td>13</td>
<td>2nd Draw-Fountains-2nd Fl Standard</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274752</td>
<td>14</td>
<td>2nd Draw-Fountains-1st Fl Filtered</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274753</td>
<td>15</td>
<td>2nd Draw-Fountains-1st Fl Standard</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274754</td>
<td>16</td>
<td>2nd Draw-Fountains-2nd Fl Annex Filtered</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274755</td>
<td>17</td>
<td>2nd Draw-Fountains-2nd Fl Annex Standard</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
<tr>
<td>7274756</td>
<td>18</td>
<td>2nd Draw-Fountains-Lobby Annex</td>
<td><1.00</td>
<td>* Sample acidified to pH <2.</td>
</tr>
</tbody>
</table>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: 8/16/2021
Date Analyzed: 08/19/2021
Signature: [Signature]
Analyst: Mark Stewart
Approved By: [Signature] Frank E. Ehrenfeld, III
Laboratory Director
Appendix to Analytical Report:

Customer Contact: Jim Proctor
Analysis: AAS-GF - ASTM D3559-08D

This appendix seeks to promote greater understanding of any observations, exceptions, special instructions, or circumstances that the laboratory needs to communicate to the client concerning the above samples. The information below is used to help promote your ability to make the most informed decisions for you and your customers. Please note the following points of contact for any questions you may have.

iATL Customer Service: customerservice@iatl.com
iATL Office Manager: jchampion@iatl.com
iATL Account Representative: Kelly Klippel
Sample Login Notes: See Batch Sheet Attached
Sample Matrix: Water
Exceptions Noted: See Following Pages

General Terms, Warrants, Limits, Qualifiers:
General information about iATL capabilities and client/laboratory relationships and responsibilities are spelled out in iATL policies that are listed at www.iATL.com and in our Quality Assurance Manual per ISO 17025 standard requirements. The information therein is a representation of iATL definitions and policies for turnaround times, sample submittal, collection media, blank definitions, quantification issues and limit of detection, analytical methods and procedures, sub-contracting policies, results reporting options, fees, terms, and discounts, confidentiality, sample archival and disposal, and data interpretation.

iATL warrants the test results to be of a precision normal for the type and methodology employed for each sample submitted. iATL disclaims any other warrants, expressed or implied, including warranty of fitness for a particular purpose and warranty of merchantability. iATL accepts no legal responsibility for the purpose for which the client uses test results. Any analytical work performed must be governed by our Standard Terms and Conditions. Prices, methods and detection limits may be changed without notification. Please contact your Customer Service Representative for the most current information.

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP, AIHA LAP LLC, or any agency of local, state or province governments nor of any agency of the U.S. government.

This report shall not be reproduced except in full, without written approval of the laboratory.

Information Pertinent to this Report:
Analysis by AAS Graphite Furnace:
- ASTM D3559-08D
Certification:
- NYS-DOH No. 11021
- NJDEP No. 03863

Note: These methods are analytically equivalent to iATL’s accredited method;
- USEPA 40CFR 141.11B
- USEPA 200.9 Pb, AAS-GF, RL <=2 ppb/sample
- USEPA SW 846-7421 - Pb(AAS-GF, RL <=2 ppb/sample)

Regulatory limit for lead in drinking water is 15.0 parts per billion as cited in EPA 40 CFR 141.11 National Primary Drinking Water Regulations, Subpart B: Maximum contaminant levels for inorganic chemicals.

All results are based on the samples as received at the lab. iATL assumes that appropriate sampling methods have been used and that the data upon which these results are based have been accurately supplied by the client.

Sample results are not corrected for contamination by field or analytical blanks.

PPB = Parts per billion. 1 µg/L = 1 ppb MDL = 0.24 PPB Reporting Limit (RL) = 1.0 PPB
Disclaimers / Qualifiers:
There may be some samples in this project that have a “NOTE:” associated with a sample result. We use added disclaimers or qualifiers to inform the client about something that requires further explanation. Here is a complete list with highlighted disclaimers pertinent to this project. For a full explanation of these and other disclaimers, please inquire at customerservice@iatl.com.

Matrix spiking is performed on each client batch to determine if interferences could impact results. When spike recoveries fall out of acceptable range matrix interference is suspected and samples are diluted until acceptable spike recovery can be achieved. Reporting limits will increase by the same degree as the dilution required.

Note: Sample dilution required due to matrix interference.

Water Sample Turbidity greater than 1.0 NTU does not meet Federal and NJ State Primary & Secondary Drinking Water Standards.

* ASTM D3559 (D) calls for the addition of acid at the time of sampling. Unless so noted on the chain of custody by the client iATL acidifies samples to a pH of <2 at least 24 hours prior to analysis.
LEAD WATER SAMPLE ANALYSIS SUMMARY

Lab No.: 7294666
Location: 2nd Floor Filtered - 1st Draw
* Sample acidified to pH <2.
Result(ppb): <1.00

Lab No.: 7294667
Location: 2nd Floor Filtered - 2nd Draw
* Sample acidified to pH <2.
Result(ppb): <1.00
Appendix to Analytical Report:

Customer Contact: Jim Proctor
Analysis: AAS-GF - ASTM D3559-08D

This appendix seeks to promote greater understanding of any observations, exceptions, special instructions, or circumstances that the laboratory needs to communicate to the client concerning the above samples. The information below is used to help promote your ability to make the most informed decisions for you and your customers. Please note the following points of contact for any questions you may have.

iATL Customer Service: customerservice@iatl.com
iATL Office Manager: twchampion@iatl.com
iATL Account Representative: Kelly Klippel
Sample Login Notes: See Batch Sheet Attached
Sample Matrix: Water
Exceptions Noted: See Following Pages

General Terms, Warrants, Limits, Qualifiers:

General information about iATL capabilities and client/laboratory relationships and responsibilities are spelled out in iATL policies that are listed at www.iATL.com and in our Quality Assurance Manual per ISO 17025 standard requirements. The information therein is a representation of iATL definitions and policies for turnaround times, sample submittal, collection media, blank definitions, quantification issues and limit of detection, analytical methods and procedures, sub-contracting policies, results reporting options, fees, terms, and discounts, confidentiality, sample archival and disposal, and data interpretation.

iATL warrants the test results to be of a precision normal for the type and methodology employed for each sample submitted. iATL disclaims any other warrants, expressed or implied, including warranty of fitness for a particular purpose and warranty of merchantability. iATL accepts no legal responsibility for the purpose for which the client uses test results. Any analytical work performed must be governed by our Standard Terms and Conditions. Prices, methods and detection limits may be changed without notification. Please contact your Customer Service Representative for the most current information.

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP, AIHA LAP LLC, or any agency of local, state or province governments nor of any agency of the U.S. government.

This report shall not be reproduced except in full, without written approval of the laboratory.

Information Pertinent to this Report:
Analysis by AAS Graphite Furnace:
- ASTM D3559-08D
Certification:
- NYS-DOH No. 11021
- NJDEP No. 03863

Note: These methods are analytically equivalent to iATL’s accredited method;
- USEPA 40CFR 141.11B
- USEPA 200.9 Pb, AAS-GF, RL <2 ppb/sample
- USEPA SW 846-7421 - Pb(AAS-GF, RL <2 ppb/sample)

Regulatory limit for lead in drinking water is 15.0 parts per billion as cited in EPA 40 CFR 141.11 National Primary Drinking Water Regulations, Subpart B: Maximum contaminant levels for inorganic chemicals.

All results are based on the samples as received at the lab. iATL assumes that appropriate sampling methods have been used and that the data upon which these results are based have been accurately supplied by the client.

Sample results are not corrected for contamination by field or analytical blanks.

PPB = Parts per billion. 1 µg/L = 1 ppb MDL = 0.24 PPB Reporting Limit (RL) = 1.0 PPB

Disclaimers / Qualifiers:
There may be some samples in this project that have a “NOTE:” associated with a sample result. We use added disclaimers or qualifiers to inform the client about something that requires further explanation. Here is a complete list with highlighted disclaimers pertinent to this project. For a full explanation of these and other disclaimers, please inquire at customerservice@iatl.com.

Matrix spiking is performed on each client batch to determine if interferences could impact results. When spike recoveries fall out of acceptable range matrix interference is suspected and samples are diluted until acceptable spike recovery can be achieved. Reporting limits will increase by the same degree as the dilution required.

Note: Sample dilution required due to matrix interference.

Water Sample Turbidity greater than 1.0 NTU does not meet Federal and NJ State Primary & Secondary Drinking Water Standards.

* ASTM D3559 (D) calls for the addition of acid at the time of sampling. Unless so noted on the chain of custody by the client iATL acidifies samples to a pH of <2 at least 24 hours prior to analysis.